本文将比特币生态分为三大类,并对大类下代表项目的发展历史、核心技术、应用案例和优缺点进行盘点与解析。
撰文:Cregis Research
在探索比特币的生态系统时,我们可以将其项目分为三大类别:主网扩展协议、二层解决方案和图灵完备性解决方案。主网扩展协议直接在比特币的主链上实施,扩展其功能。二层解决方案则在比特币主链之上构建,提供额外的功能和改进,比如提高交易速度和降低交易成本。最后,图灵完备性解决方案为比特币引入智能合约功能,使其能够支持更复杂的应用,开拓比特币用例的新领域。这三大类别共同构成了一个多元化、不断发展的比特币生态系统。本文将围绕这三大类别,提供一个全面的解析。
(1)简介
Ordinals 协议由开发者 Casey Rodarmor 于 2022 年 6 月在其 Github 中发布。ordinals 协议利用比特币区块链的特性,允许对每个 Satoshi(比特币的最小单位)进行独特标记和跟踪。Ordinals 的核心理念是通过称为「inscription」的过程,将文本、图像和视频等元数据附加到单个 Satoshi 上,从而创造出独一无二的数字资产。用户可通过开源项目 ord(https://github.com/ordinals/ord),实现链上数据存储。
(2)发展历史
(3)核心技术
Ordinals 协议本质上是基于比特币的 Taproot 升级和隔离见证(SegWit)技术,通过操作码将任意数据存储在隔离见证当中,从而实现了链上存储的功能。目前国家漏洞数据库正式将 Ordinals 的「inscriptions」功能,编号为 CVE-2023-50428。
Taproot 升级的主要目的是提高比特币的隐私性和扩展性,而不是用于向区块链写入数据。Taproot 升级后,可以在创建见证脚本时,使用「OP_FALSE」,「OP_IF」等操作码将任意数据当作签名数据嵌入在脚本中。当进行交易时,签名数据将从交易主体中分离,通过操作码带入的任意数据将存储在见证数据(Witness data)当中。
Ordinals 通过上述方法绕过了数据载体大小限制,在任何比特区块的见证数据(Witness data)部分存储上限为 4MB 的数据,变相实现了铸造 NFT 的功能。
(4)应用案例
2023 年 3 月,Domodata 基于 ordinals 协议开发了 BRC-20 铭文标准,利用 Satoshis( 聪 ) 来存储和管理代币的各种信息,如代币名称、符号、总量等,将这些信息以 JSON 格式编码后写入 Satoshis( 聪 ) 中,组成了一个一个的铭文 (inscriptions)。最后通过汇总所有铭文 (inscriptions) 的交易活动,便可以找到 BRC-20 数字资产的余额状态,从而实现了数字资产的部署、铸造和转账功能。
基于 Ordinals 协议和 brc20 标准铸造的数字资产,市值前三的有「SATS」,「ORDI」和「MUBI」,其市场表现情况如下图:
(5)优点和缺点
Ordinals 协议为比特币生态系统既带来了积极影响,也引发了一些担忧。积极的影响主要体现在市场热度和矿工收入方面。
优点
缺点
(1)简介
Atomicals 协议由 Arthur 开发,在 2023 年 9 月发布。Atomicals 的使命是「永久归还个人数字主权的控制权,并巩固比特币作为工作量证明灯塔的地位。」
Atomicals 协议基于 BTC 的 UTXO 进行铸造和传播,1 token = 1 sat。Atomicals 协议内部集成了 ARC-20 铸币标准,可用通过其开源工具 atomicals-js(https://github.com/atomicals/atomicals-js)实现铸币功能,无需借助第三方工具及铸币标准(例如 BRC-20 标准)实现资产铸造功能。
同时,Atomicals 是一个基于工作量证明的的资产铸造协议,需要通过电脑 CPU 挖矿,才能获得数字资产。相比 Ordinals+BRC-20 利用 gas 的资产铸造方式要更有技术门槛,且不会为比特币网络带来额外的负担。
(2)发展历史
(3)核心技术
Atomicals 协议基于 Taproot 升级,通过在 UTXO 中刻入 json 数据,实现了数字资产的铸造。在比特币的每个 UTXO 中,可以嵌入代表特定资产的信息,如代币的数量、类型等。
1 Satoshi = 1 Token
Atomicals 协议与最初为 NFT 设计的 Ordinals 不同,它从底层重新思考了如何在比特币上更合理的铸造数字资产。它以比特币的最小单位 Satoshi 作为基本原子,每个 Satoshi 的 UTXO 代表着 Token 本身,形成了「1 Satoshi = 1 Token」的绑定关系,意味着每个代币的价值永远不会低于一个聪的价值。
交易验证
在 Atomicals 中,交易的验证只需在 BTC 链上查询对应 Satoshi 的 UTXO 即可。此外,ARC20 Token 保持着与 BTC 本身相同的原子性,其转账计算完全依赖 BTC 的基础网络处理,从而降低了对第三方排序器的依赖,增强了系统的去中心化特性。
BTC 和 ARC20 的交换
ARC-20 使用比特币网络中的 Satoshi 单位来表示每个代币,它们可以像普通比特币一样拆分和组合。ARC-20 代币可以由任何人铸造,并转移到任何比特币地址类型,并可与支持 UTXO 的钱包配合使用。由于 BTC 本质上也由 UTXO 组成,因此 BTC 与 ARC-20 的交换只需要调换 UTXO 的输入与输出即可实现。
工作量证明
Bitwork 挖矿是 Atomicals 协议中的一个概念,其本质上是引入了工作量证明机制,既通过 CPU/GPU 挖矿来开采代币。
(4)应用案例
Atomicals 协议于 2023 年 9 推出,ARC-20 和 REALM 还处于发展初期,还需要等待社区和开发者的完善。基于 Atomicals 协议铸造的数字资产,市值前三的有「ATOM」,「REALM」和「ELECTON」,其市场表现情况如下图:
(5)Atomocals 和 ordinals 的差异
(1)简介
Runes 协议和 Pipe 协议都是比特币网络的铸币协议,只不过前者是技术构想,而后者是对前者的技术实现。Runes 协议是由 Ordinals 开发者 Casey Rodarmor 提出一个技术想法,公布在了个人博客当中。而 Pipe 协议则是 BennyTheDev 基于 Casey Rodarmor 的技术想法编写的一个可用协议。
Pipe 的协议设计和 ARC20 非常相似,同样是直接向 UTXO 中写入铸币数据(部署、铸造、转移),然后将转账直接交给比特币主网来处理。
(2)发展历史
(3)应用案例
Pipe 协议的作者 BennyTheDev,同时也是 Trac System 的创始人。Trac Systems 将 Pipe 协议列为其生态系统的重要组成部分。
(1)简介
Taproot Assets 协议(前身 taro)由 Lightning Labs 在今年 10 月发布,Taproot Assets 协议支持在比特币和闪电网络上发行稳定币和其他资产。
Taproot Assets 协议将比特币主网当作 Token 注册表,仅在比特币主网的 UTXO 中写入代币信息,并不存储代币的转账、铸造等功能。Taproot Assets 协议发行的所有资产信息由「Taproot Assets universe」保存,它保存有关已发行的资产、数量和规则的信息,并保存有关最近转移的证据。
(2)发展历史
(3)核心技术
Taproot Assets 是基于 Taproot 升级设计出的比特币链上协议。Taproot Assets 使用「Merkle Sum、稀疏默克尔树 (MS-SMT)」和「Taptweak」来承诺定义资产的创建和所有权的信息。Taproot Assets 依赖于 Taproot 来实现新的树结构,允许开发人员在现有输出中嵌入任意资产元数据。
在 Taproot Assets 框架下创建资产需要执行一次单独的链上根交易(Taproot transaction),在这一交易中,对于可以铸造的资产数量以及可以持有这些资产的账户数量没有限制。实现资产转移,需要重新组织默克尔树并发布一个新的链上交易。这一单独的链上交易可以反映无限量的内部 Taproot Assets 交易。
采用这种方法,资金被分配给账户持有者,而且在进行 Taproot Assets 交易时,所有资金的移动和分配都被记录在这个单一的链上交易中。通过这种方式,Taproot Assets 允许在比特币网络和闪电网络上上进行复杂的资产管理和交易。
(4)应用案例
目前 Taproot Assets 生态尚处于发展初期,成熟的项目较少。其中最著名项目为 Nostr Assets,Nostr Assets 现在一共创建了两种代币 Trick 和 Treat,并且向 ordi 持有者发放空投。
(5)优点和缺点
优点
缺点
(1)简介
Lightning Network 是基于链外状态通道的比特币二层网络解决方案。它旨在解决比特币网络的可扩展性问题,允许进行更快速、更高效和更便宜的交易。
(2)历史
(3)核心技术
Andreas Antonopoulos 将闪电网络称为第二层路由网络。支付通道允许参与者相互转移资金,而无需在区块链上公开他们的所有交易。这是通过惩罚不合作的参与者来完成的。打开通道时,参与者必须提交一个金额(在区块链上的资金交易中)。
如果我们假设比特币区块链上有一个庞大的通道网络,并且所有比特币用户都通过在比特币区块链上打开至少一个通道来参与这个图表,那么就有可能在这个网络内创建近乎无限量的交易。
(4)应用案例
Bitfinex 和 Kraken 等加密货币交易所使用它来实现存款和取款。Laszlo Hanyecz 因 2010 年为两个披萨支付 10,000 比特币而在加密货币社区声名鹊起,他在 2018 年使用闪电网络又购买了两个披萨并支付了 0.00649 比特币。
(5)优点和缺点
优点
缺点
(1)简介
Stacks 是基于侧链的比特币二层网络解决方案,初始版本于 2021 年初发布。其目标为扩展比特币的功能,同时保持其核心特性,如去中心化和安全性。Stacks 本质上是在比特币链外构建了一条新链,拥有独立的治理结构和交易模式。和以太坊二层解决方案 Rollup 相比,Stacks 使用 PoX(Proof of Transfer)共识算法,并且交易验证者需要质押 STX 代币(挖 BTC),矿工则需要在 Bitcoin 主链上质押 BTC(挖 STX)。
(2)历史
(3)核心技术
Stacks 的技术架构包括核心层和子网,其核心层基于 PoX(转移证明)机制与比特币层进行交互,PoX 是类似 PoS 的权益质押,二者交互过程如下:
STX 矿工:Stacks 网络中,STX 矿工通过在比特币区块链上发送交易来参与领导人选举。这个过程涉及到一个可验证随机函数(VRF),它随机选择每轮的领导人。在这个过程中,矿工通过提供更高的比特币出价来增加成为下一个区块领导者的机会。一旦获选为领导者,矿工将在 Stacks 区块链上创建并记录新的区块。
STX 持有者的 Stacking:STX 持有者可以通过参与称为「Stacking」的过程来参与共识并获得比特币奖励。在这个过程中,用户将他们的 STX 代币锁定一个周期(大约两周),同时运行或支持一个完整节点,并通过 STX 交易在网络上发送有用的信息。积极参与 Stacking 的 STX 持有者会根据他们对网络的贡献获得相应周期内的比特币奖励。
(1)简介
Rootstock (RSK) 是由 RSK Labs 开发的基于侧链的比特币二层网络解决方案,于 2018 年在比特币主网上推出,引入了智能合约功能。作为比特币网络上的 EVM 兼容侧链,RSK 允许开发者使用以太坊的语言构建 dApp 和智能合约,并整合进比特币生态系统。
(2)历史
(3)核心技术
Rootstock (RSK) 的项目架构可以简要概述为以下三个核心组成部分:
合并挖矿:RSK 允许比特币矿工同时挖掘比特币和 RSK 区块,提高了开发者的收益潜力。由于 RSK 和比特币使用相同的工作量证明 (PoW) 共识机制,矿工能够同时挖掘两个区块链。这种合并挖矿方式不仅提高了矿工的盈利能力,还保持了比特币区块链的安全性。
Powpeg:这是一个双向桥梁,用于在比特币和 RSK 区块链之间转移比特币。通过 RSK 的资产 smartBTC (RBTC) 实现,这个桥梁允许用户在两个区块链之间无缝转换资金,无需额外费用。
RSK 虚拟机 (RVM):RVM 是基于以太坊虚拟机的,允许在 RSK 上执行以太坊智能合约。这为开发人员提供了一个使用 Solidity 编码的平台,可以在 RSK 上构建与以太坊兼容的应用程序。
RIF OS (Root Infrastructure Framework Open Standard) 建立在 Rootstock 之上,为开发者提供了一系列基础设施和服务,支持 DeFi、存储、域名服务和支付解决方案等。RIF OS 旨在通过提供开放和去中心化的工具,降低开发人员采用区块链技术的门槛,促进去中心化基础设施服务的公平市场发展。
(1)简介
Liquid 由 Blockstream 在 2018 年推出,是基于侧链的比特币二层网络解决方案。Liquid 的一个重要组成部分是其针对比特币 DeFI 的解决方案,通过将比特币发送到 Liquid,用户可以使用由比特币区块链支持的去中心化金融服务。
Liquid 通过挂钩系统将自己与比特币挂钩,独立于比特币网络运行。Liquid 拥有 L-BTC 或 Liquid Bitcoin 原生代币,它是通过将比特币锁定到由不同成员联盟管理的多重签名钱包中而创建的。侧链上的资产与其所代表的原生资产的价值以 1:1 的比例挂钩,允许任何人在另一个区块链上使用他们的代币和硬币。
(2)历史
(3)核心技术
Liquid 本质上是比特币的一条侧链,将比特币从主链上 1:1 转入到侧链,同时也可以将侧链上的代币再 1:1 转回到主链。通过侧链,我们可以在不改变原有的区块链的基础上,实现主链无法实现的功能。比如快速转账,私密转账,以及智能合约等。
液态网络通过 2-way peg(双向锚定)技术运行,使主链上的 BTC 在侧链上生成等量的 L-BTC。液态网络中的转账是通过 L-BTC 进行的,这种数字货币与 BTC 以 1:1 的比例锚定。用户通过锁入比特币(peg-in)获得 L-BTC,完成 102 个比特币区块确认后,在液态网络上生成等量的 L-BTC。使用 L-BTC,用户可以享受液态网络的快速转账。将 L-BTC 转回 BTC(peg-out)只需两个液态网络区块确认,但需通过液态网络的会员机构操作。液态网络会员负责生成区块,类似比特币网络中的矿工,每分钟生成一个区块,转账速度快,时间可靠。液态网络的会员包括 Bitfinex、OKCoin、火币等,完整会员名单可在 Liquid.net 上查看。
(1)简介
亦来云(Elastos)在 11 月 25 日发布公告,称计划推出比特币二层网络 BeL2,公告称 BeL2 将在不改变比特币核心原则的情况下增强比特币的功能,例如交易速度、智能合约和隐私保护。
(2)发展规划
Elastos 的 BeL2 将于今年 12 月发布白皮书。BeL2 白皮书将详细介绍操作机制和一年的产品规划,前 3 个月完成概念技术验证,随后 3 个月内实现中继器的去中心化,然后在最后 6 个月内将其整合到「Hero」产品中。
(3)架构
零知识证明:在 BeL2 网络中,将采用零知识证明技术。当比特币用户进行交易时,系统会生成特殊证明,在不公开交易的具体内容,如交易双方的身份、交易金额等信息的情况下,向 BeL2 第二层网络证明交易确实发生过。通过此方式保证交易的可验证性,和用户的隐私安全。
中继器和质押机制:BeL2 网络将使用中继器传输和验证比特币网络的交易。通过质押机制对中继器运行者进行激励和监管,确保网络安全性。
智能合约功能:BeL2 将引入智能合约功能,扩展比特币的应用示例。BeL2 由 Elastos SmartWeb 的 DAO 理事会成员 Cyber Republic 保护,每年由其全球社区使用 ELA(其与比特币合并的开采储备货币)进行投票。
(1)简介
ZeroSync 项目负责人 Robin Linus 在 10 月 9 日公布了关于 BitVM 的论文(BitVM: Compute Anything on Bitcoin)。简单来说 BitVM 就是比特币网络的虚拟机,其通过链外执行和链上验证的方式,实现在不改变比特币网络共识规则的情况下,达到图灵完备的效果。
(2)BitVM 和 EVM 区别
BitVM 和以太坊智能合约相比还存在着很大的区别,以太坊智能合约能够支持多方(multi-party)交易,但是 BitVM 的设计仅能够支持两方(two-party)交易交换。BitVM 的大部分交易处理都是在链外进行的,最大限度地减少了对底层比特币区块链的影响;与 BitVM 不同,EVM 是一个链上引擎,所有操作都在以太坊的本机环境中进行;BitVM 是比特币区块链的可选附加引擎,其自身的操作不需要 BitVM。相比之下,EVM 是以太坊区块链不可或缺的一部分;没有 EVM,就没有以太坊。
(3)核心技术
BitVM 的功能是通过比特币 Taproot 升级实现的。BitVM 主要依赖于 taproot 地址矩阵(taptree),类似于二进制电路的程序指令。在这个框架下,每个 Script 脚本中的 UTXO 花费条件指令被视为一个程序最小单元,通过 taproot 地址中的特定代码生成 0 或 1,构成 taptree。整个 taptree 的执行结果是二进制电路文本效果,相当于可执行的二进制程序。程序的复杂性取决于组合的 taproot 地址数量,地址越多,Script 预置的指令越丰富,taptree 能执行的程序也就越复杂。
BitVM 大部分处理都是在链下进行的,链下处理的交易被捆绑成批次并发布到底层比特币区块链,利用类似于乐观汇总(Optimistic-rollups)中使用的有效性确认模型。同时,BitVM 使用将欺诈证明与质询响应协议相结合的模型来处理和验证两方(证明者和验证者)之间的交易。证明者发起计算任务,并通过自己和验证者之间建立的通道发送该任务,然后验证者确认计算的有效性。一旦经过验证,该交易将被添加到整理的整个批次中,以便发布到底层的比特币区块链。
(1)简介
RGB 由 LNP/BP 协会维护和更新,是一个支持比特币网络和闪电网络的智能合约系统。RGB 协议提出了一种更可扩展、更加隐私、更面向未来的解决方案,其基石是 Peter Todd 在 2017 年 提出的客户端验证(client-side validation)和一次性密封条(single-use-seals)的概念。
(2)历史
(3)核心技术
RGB 的核心的理念是,仅在必要的时候才使用比特币区块链,也就是利用工作量证明和网络的去中心化来实现重复花费保护和审查抗性。所有的代币转移的验证工作都从全局共识层中移除、放在链下,仅由接收支付的一方的客户端来验证。
那么它到底怎么工作呢?在 RGB 中,基本上代币都归属于一个比特币 UTXO(无论是已经存在的 UTXO,还是临时创建的),而为了转移代币,你需要花费这个 UTXO。在花费这个 UTXO 的时候,比特币交易必须包含对一条消息的承诺,这条消息的内容是 RGB 的支付信息,它定义了输入、这些代币将被发送到哪个 UTXO、资产的 id、数量、花费的交易以及其它需要附加的数据。
RGB 代币的具体支付信息在链下通过专门的通信通道来传输,从支付者的发往接收者的客户端并由后者来验证其没有违反 RGB 协议的规则。如此一来,区块链观察者将无法获得任何关于 RGB 用户活动的信息。
不过,验证发来的支付信息还不足以确保发送者真的拥有要发送给你的资产,因此,为了确保发来的交易具有终局性,你还必须从支付者处接收关于这些代币的所有交易的历史,即从当前的这一笔一直追溯到其最初的发行的那一笔。验证了所有的交易历史,你就可以保证,这些资产没有被通胀、附加在资产之上的所有花费条件都得到了满足。
对于比特币而言,2023 年是一个具有里程碑意义的一年。与专注于智能合约的第一层区块链(如以太坊)相比,比特币在功能和应用用例方面受到一定的技术限制。然而今年,比特币的生态系统因为技术创新而获得了新的方向和活力,这些创新为比特币带来了更多的应用场景和可能性。
参考资料
https://docs.ordinals.com/
https://docs.atomicals.xyz/faq
https://rodarmor.com/blog/runes/
https://github.com/BennyTheDev/pipe-specs
https://docs.lightning.engineering/the-lightning-network/taproot-assets
https://lightning.network/how-it-works/
https://docs.stacks.co/docs/intro
https://dev.rootstock.io/kb/faqs/
https://docs.liquid.net/docs/technical-overview
https://elastos.info/blog/elastos-bel2-bitcoin-layer-2-solution/
https://www.theblock.co/post/255683/bitvm-bitcoin-smart-contracts
https://bitvm.org/bitvm.pdf
https://www.rgbfaq.com/faq/what-is-rgb
https://medium.com/@FedericoTenga/understanding-rgb-protocol-7dc7819d3059
https://www.btcstudy.org/2022/04/24/understanding-rgb-protocol/
https://petertodd.org/2017/scalable-single-use-seal-asset-transfer
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0342.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
【免责声明】市场有风险,投资需谨慎。本文不构成投资建议,用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。