ZK Insights | 16th Mar 2025
2025-03-16 17:00
Antalpha Labs
2025-03-16 17:00
订阅此专栏
收藏此文章

Highlights

NIST PQC Standardization Process | HQC Announced as a 4th Round Selection

HQC 在 NIST PQC 第四轮中被选中标准化,推进后量子密码学。

  • https://csrc.nist.gov/News/2025/hqc-announced-as-a-4th-round-selection

Math isn't ready to solve this problem

介绍关于椭圆曲线的一个未解问题——秩猜想。

  • https://www.youtube.com/watch?v=6gCaEeBNlnk

The path to secure and efficient zkVMs: How to track progress

这篇文章概述了 zkVM 开发的结构化路线图。它将「安全阶段」与「速度阶段」分开,为我们提供了一种透明的进度跟踪方式。

  • https://a16zcrypto.com/posts/article/secure-efficient-zkvms-progress/

Partial evaluations and linearization

介绍 Plonk 中的部分求值,实现高效的零知识证明多项式验证。

  • https://www.cryptologie.net/article/626/partial-evaluations-and-linearization/

Still confused by Plonk's permutation?

通过可视化和代码讲解 Plonk 置换论证,简化零知识证明的理解。

  • https://www.cryptologie.net/article/627/still-confused-by-plonks-permutation/

Papers

Transmitting Secrets by Transmitting only Plaintext

  • https://eprint.iacr.org/2025/438

Preimage Attacks on up to 5 Rounds of SHA-3 Using Internal Differentials

  • https://eprint.iacr.org/2025/439

A Unified Framework for Succinct Garbling from Homomorphic Secret Sharing

  • https://eprint.iacr.org/2025/442

Homomorphic Signature-based Witness Encryption and Applications

  • https://eprint.iacr.org/2025/443

Disincentivize Collusion in Verifiable Secret Sharing

  • https://eprint.iacr.org/2025/446

Polar Lattice Cryptography

  • https://eprint.iacr.org/2025/452

Verifiable Secret Sharing Based on Fully Batchable Polynomial Commitment for Privacy-Preserving Distributed Computation

  • https://eprint.iacr.org/2025/453

A 10-bit S-box generated by Feistel construction from cellular automata

  • https://eprint.iacr.org/2025/457

Revisiting the Security and Privacy of FIDO2

  • https://eprint.iacr.org/2025/459

Machine-checking Multi-Round Proofs of Shuffle: Terelius-Wikstrom and Bayer-Groth

  • https://eprint.iacr.org/2025/461

SoK: Efficient Design and Implementation of Polynomial Hash Functions over Prime Fields

  • https://eprint.iacr.org/2025/464

zkAML: Zero-knowledge Anti Money Laundering in Smart Contracts with whitelist approach

  • https://eprint.iacr.org/2025/465

PMNS arithmetic for elliptic curve cryptography

  • https://eprint.iacr.org/2025/467

Optimized Frobenius and Cyclotomic Cubing for Enhanced Pairing Computation

  • https://eprint.iacr.org/2025/468

Cross-Platform Benchmarking of the FHE Libraries: Novel Insights into SEAL and OpenFHE

  • https://eprint.iacr.org/2025/473

HammR: A ZKP Protocol for Fixed Hamming-Weight Restricted-Entry Vectors

  • https://eprint.iacr.org/2025/475

A Note on the Advanced Use of the Tate Pairing

  • https://eprint.iacr.org/2025/477

Post Quantum Migration of Tor

  • https://eprint.iacr.org/2025/479

Worst-case Analysis of Lattice Enumeration Algorithm over Modules

  • https://eprint.iacr.org/2025/480

RHQC: post-quantum ratcheted key exchange from coding assumptions

  • https://eprint.iacr.org/2025/481

An Efficient Sequential Aggregate Signature Scheme with Lazy Verification

  • https://eprint.iacr.org/2025/482

如果你重视零知识证明技术信息的实效性和信息源质量的意义,不想娱乐至死、短视投机、无关广告、推荐算法、劣币驱逐良币的泥沙裹挟迷失,请多支持我们(包括给予赞助支持),让这一汨清流继续流淌~





* 📮 邮箱订阅:https://paragraph.xyz/@zkinsights
* 感谢 Kurt、Even、Harry 对本期 ZK Insights 的特别贡献!
 ZK Insights  Github repo Pull Request ZKPunks 
Github repo linkhttps://github.com/ZKPunk-Org/zk-insights
 https://insights.zkpunk.pro/ 
:Purple

Coset 

致力于促进不同个体之间有效的、深度的交流与协作,激发更多创新和创造。

关注我们的社交媒体,了解更多动态:

Website:https://coset.io/ 

Twitter:https://twitter.com/coset_io

Telegram:https://t.me/coset_io

Youtube:www.youtube.com/@coset_io
Contact:emily@coset.io


 文 /Read More ,开启邮箱订阅🔛

【免责声明】市场有风险,投资需谨慎。本文不构成投资建议,用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。

Antalpha Labs
数据请求中
查看更多

推荐专栏

数据请求中
在 App 打开