ZK Insights | 16th Mar 2025
2025-03-16 17:00
Highlights
NIST PQC Standardization Process | HQC Announced as a 4th Round Selection
HQC 在 NIST PQC 第四轮中被选中标准化,推进后量子密码学。
- https://csrc.nist.gov/News/2025/hqc-announced-as-a-4th-round-selection
Math isn't ready to solve this problem
介绍关于椭圆曲线的一个未解问题——秩猜想。
- https://www.youtube.com/watch?v=6gCaEeBNlnk
The path to secure and efficient zkVMs: How to track progress
这篇文章概述了 zkVM 开发的结构化路线图。它将「安全阶段」与「速度阶段」分开,为我们提供了一种透明的进度跟踪方式。
- https://a16zcrypto.com/posts/article/secure-efficient-zkvms-progress/
Partial evaluations and linearization
介绍 Plonk 中的部分求值,实现高效的零知识证明多项式验证。
- https://www.cryptologie.net/article/626/partial-evaluations-and-linearization/
Still confused by Plonk's permutation?
通过可视化和代码讲解 Plonk 置换论证,简化零知识证明的理解。
- https://www.cryptologie.net/article/627/still-confused-by-plonks-permutation/
Papers
Transmitting Secrets by Transmitting only Plaintext
- https://eprint.iacr.org/2025/438
Preimage Attacks on up to 5 Rounds of SHA-3 Using Internal Differentials
- https://eprint.iacr.org/2025/439
A Unified Framework for Succinct Garbling from Homomorphic Secret Sharing
- https://eprint.iacr.org/2025/442
Homomorphic Signature-based Witness Encryption and Applications
- https://eprint.iacr.org/2025/443
Disincentivize Collusion in Verifiable Secret Sharing
- https://eprint.iacr.org/2025/446
Polar Lattice Cryptography
- https://eprint.iacr.org/2025/452
Verifiable Secret Sharing Based on Fully Batchable Polynomial Commitment for Privacy-Preserving Distributed Computation
- https://eprint.iacr.org/2025/453
A 10-bit S-box generated by Feistel construction from cellular automata
- https://eprint.iacr.org/2025/457
Revisiting the Security and Privacy of FIDO2
- https://eprint.iacr.org/2025/459
Machine-checking Multi-Round Proofs of Shuffle: Terelius-Wikstrom and Bayer-Groth
- https://eprint.iacr.org/2025/461
SoK: Efficient Design and Implementation of Polynomial Hash Functions over Prime Fields
- https://eprint.iacr.org/2025/464
zkAML: Zero-knowledge Anti Money Laundering in Smart Contracts with whitelist approach
- https://eprint.iacr.org/2025/465
PMNS arithmetic for elliptic curve cryptography
- https://eprint.iacr.org/2025/467
Optimized Frobenius and Cyclotomic Cubing for Enhanced Pairing Computation
- https://eprint.iacr.org/2025/468
Cross-Platform Benchmarking of the FHE Libraries: Novel Insights into SEAL and OpenFHE
- https://eprint.iacr.org/2025/473
HammR: A ZKP Protocol for Fixed Hamming-Weight Restricted-Entry Vectors
- https://eprint.iacr.org/2025/475
A Note on the Advanced Use of the Tate Pairing
- https://eprint.iacr.org/2025/477
Post Quantum Migration of Tor
- https://eprint.iacr.org/2025/479
Worst-case Analysis of Lattice Enumeration Algorithm over Modules
- https://eprint.iacr.org/2025/480
RHQC: post-quantum ratcheted key exchange from coding assumptions
- https://eprint.iacr.org/2025/481
An Efficient Sequential Aggregate Signature Scheme with Lazy Verification
- https://eprint.iacr.org/2025/482
如果你重视零知识证明技术信息的实效性和信息源质量的意义,不想娱乐至死、短视投机、无关广告、推荐算法、劣币驱逐良币的泥沙裹挟迷失,请多支持我们(包括给予赞助支持),让这一汨清流继续流淌~
* 📮 邮箱订阅:https://paragraph.xyz/@zkinsights
* 感谢 Kurt、Even、Harry 对本期 ZK Insights 的特别贡献!如果你对我们的 ZK Insights 感兴趣,或者有类似的内容分享想法,我们非常鼓励大家直接前往我们的 Github repo Pull Request,与有相同兴趣和爱好的 ZKPunks 一起共创!
✨Github repo link:https://github.com/ZKPunk-Org/zk-insights✨ 网页汇总版:https://insights.zkpunk.pro/
Coset
致力于促进不同个体之间有效的、深度的交流与协作,激发更多创新和创造。
Website:https://coset.io/
Twitter:https://twitter.com/coset_io
Telegram:https://t.me/coset_io
Youtube:www.youtube.com/@coset_io
Contact:emily@coset.io
点击 阅读原文 /Read More ,开启邮箱订阅🔛
【免责声明】市场有风险,投资需谨慎。本文不构成投资建议,用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。