ZK Insights | 26th May 2024
2024-05-26 17:29
Coset
2024-05-26 17:29
Coset
2024-05-26 17:29
订阅此专栏
收藏此文章

 Highlights

ZKProof 6 in Berlin

  • https://zkproof.org/events/zkproof-6-berlin/

Open-Binius by Ingonyama

开源硬件 IP,用于加速二进制域的 ZK 证明。

Open-source hardware IPs for accelerating ZK proofs over binary fields.

  • https://github.com/ingonyama-zk/open-binius

Sonobe BTC

为可验证的比特币轻客户端使用 folding 方案。通过 Sonobe 库,用 Nova fold 和 prove 十万个比特币区块!

Using folding schemes for a provable bitcoin light client. Folding and proving 100,000 Bitcoin blocks with Nova via Sonobe library!

  • https://github.com/dmpierre/sonobe-btc

ZKThreads: A canonical ZK sharding framework for dApps

一个应用层组件,允许用户本地证明一批交易并更新规范状态。

an application-level component allowing users to locally prove a batch of transactions and update the canonical state.

  • https://ethresear.ch/t/zkthreads-a-canonical-zk-sharding-framework-for-dapps/19619

SNARKnado

SNARKnado 用于验证比特币上的 SNARK,用基于 SNARK 的更像电路的协议取代了 BitVM 的 RISC-V 抽象。通过这种优化,可以将挑战 - 响应轮次减少到四个,从而将现有 BitVM RISC-V 设计改进了 8 倍以上。然而,与 BitVM2 不同的是,SNARKnado 不支持无需许可的挑战。

  • https://www.alpenlabs.io/blog/snarknado-practical-round-efficient-snark-verifier-on-bitcoin

Expander-rs

Expander-RS 加密库,是 Expander 的开源 Rust 版本。

The Expander-RS cryptography library,is the open source rust version of Expander.

  • https://github.com/PolyhedraZK/Expander-rs

 Updates

Noir v0.29.0 重大变化

1. 默认情况下使用不同的返回值见证

2. 位移操作的右操作数被限制为 u8 类型


  1. use distinct return value witnesses by default

  2. Bit shift is restricted to u8 right operand

  • https://github.com/noir-lang/noir/releases/tag/v0.29.0

 Papers

Speeding Up Multi-Scalar Multiplications for Pairing-Based zkSNARKs

Revisiting the recent precomputation-based MSM calculation method proposed by Luo, Fu and Gong at CHES 2023 and generalize their approach, presented a general construction of optimal buckets. This improvement leads to significant performance improvements.

  • https://eprint.iacr.org/2024/750

More Embedded Curves for SNARK-Pairing-Friendly Curves

Showing how the problem of finding families of embedded curves is related to the problem of finding optimal formulas for subgroup membership testing on the pairing-friendly curve side. Then apply Smith's technique and Dai, Lin, Zhao, and Zhou criteria to obtain the formulas of embedded curves with KSS, and outline a generic algorithm for solving this problem in all cases; Provide two families of embedded curves for KSS18 and give examples of cryptographic size. 

  • https://eprint.iacr.org/2024/752

Breaking Verifiable Delay Functions in the Random Oracle Model

Showing that VDFs with imperfect completeness and non-adaptive computational uniqueness cannot be constructed in the pure random oracle model (without additional computational assumptions).

  • https://eprint.iacr.org/2024/766

Clap: a Rust eDSL for PlonKish Proof Systems with a Semantics-preserving Optimizing Compiler

  • https://arxiv.org/abs/2405.12115

The Ouroboros of ZK: Why Verifying the Verifier Unlocks Longer-Term ZK Innovation

Researchers from Matter Labs outline a research program and justify the need for more work at the intersection of ZK and formal verification research.

  • https://eprint.iacr.org/2024/768

Instance-Hiding Interactive Proofs

The instance-hiding property requires that the prover should not learn anything about x in the course of the interaction. Investigating the properties and power of such instance-hiding proofs.

  • https://eprint.iacr.org/2024/776

Doubly-Efficient Batch Verification in Statistical Zero-Knowledge

  • https://eprint.iacr.org/2024/781

SmartBean: Transparent, Concretely Efficient, Polynomial Commitment Scheme with Logarithmic Verification and Communication Costs that Runs on Any Group

  • https://eprint.iacr.org/2024/785

A Note on Zero-Knowledge for NP and One-Way Functions

  • https://eprint.iacr.org/2024/800

 推荐阅读

ZKP 课程招募|把握 PLONK,细嗅底层加密的金蔷薇

零知识证明 - 说说 Binius

【论文速递】S&P 2024 ( 安全多方计算、零知识证明、门限签名、ORAM、PIR)

【论文速递】Eurocrypt'24(同源、LWE、签名、信息论安全、安全外包、证明系统、混淆电路)

*感谢 Kurt、Even、Harry、Purple 对本期 ZK Insights 的特别贡献!
如果你对我们的 ZK Insights 感兴趣,或者有类似的内容分享想法,我们非常鼓励大家直接前往我们的 Github repo Pull Request,与有相同兴趣和爱好的 ZK-nerd 一起共创!
Github repo link:https://github.com/Antalpha-Labs/zk-insights
本期排版:Purple


Antalpha Labs 是一个非盈利的 Web3 开发者社区,致力于通过发起和支持开源软件推动 Web3 技术的创新和应用。

官网:https://labs.antalpha.com

Twitter:https://twitter.com/Antalpha_Labs

Youtube:https://www.youtube.com/channel/UCNFowsoGM9OI2NcEP2EFgrw

联系我们:hello.labs@antalpha.com

点击 阅读原文 共创下期 weekly

【免责声明】市场有风险,投资需谨慎。本文不构成投资建议,用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。

Coset
数据请求中
查看更多

推荐专栏

数据请求中
在 App 打开