Uniswap V3、Curve V2 和 DODO 分别采用了不同的方式实现了流动性的集中,提高了 LP 的资金效率。
原文标题:《深入对比 Uni V3,CurveV2,DODO 做市算法 —— 集中流动性带来的效率提升》
撰文:DODO 研究院
DEX 发展中,算法的迭代和做市形式的变化是一个主线。从恒定价格和恒定乘积做市到各种集中流动性算法,DEX 的底层做市算法效率越来越高。大浪淘沙下,采用集中流动性方案的 DEX 表现位居市场前列,Uni V3,Curve V2,DODO 是其中的佼佼者。三者分别采用了不同的方式实现了流动性的集中,提高了 LP 的资金效率,并在市场上取得了巨大成功。本文将从多个维度剖析底层做市算法,深入比较三家交易所底层算法的数据表现,对比三家交易所的整体市场表现。
有效率,才有经济。——本杰明
恒定乘积做市公式:x*y=k,被视为 DeFi 领域的突破性创新。它开创了资金池模式的交易形式实现了链上交易,但恒定乘积的 AMM 做市曲线也有无法避免的效率问题。
Uniswap(Uni) 早期版本采用了恒定乘积做市公式。从图中可以看出,其流动性均匀地分布在曲线上,代币价格的理论波动范围在 0 到无穷,而市场上代币价格变动范围集中在一个小的区间内。因此,价格波动外的流动性并没有真正提供到市场上,这就造成了效率损失。这种情况下,滑点、市场深度、无常损失都会受到负面影响。
集中流动性就是以某种方式改变做市曲线上的流动性分布,将流动性集中在市场交易最频繁的区间,提高做市资金的效率。广义上讲,任何调控做市曲线,以改变资金池流动性分布的尝试都可以称之为集中流动性。Uni V3,Curve V2,DODO 都是典型的集中流动性的 DEX,但底层算法的明显差异也使各自有了不同的差异点。集中流动性的解决方案不单一,本质都是在尽可能改进资金利用效率,满足代币交易的市场需求和做市需求。
范围挂单和杠杆流动性
Uni V3 提出的范围挂单(Range Order)允许用户在特定的价格区间提供流动性,即把做市资金集中在特定的价格区间,而整个池子的流动性分布就是所有曲线的加和。LP 提供的是杠杆化的流动性,因为 LP 的资金只在其选定的价格区间起作用。若在区间内,做市资金赚取手续费的效率成倍提升;若在区间外,做市资金便失效。
多个范围挂单示意图(来源:《Uniswap V3: Liquidity providing 101》 by MellowProtocol)
由此可见,Uni V3 集中流动性的方式是提供了杠杆流动性的机制,通过 LP 的主观行为将流动性集中在市场价格附近,即 LP 会主观预测价格运行的范围。市场价格波动时,LP 将会主动调整自己的做市范围,大量的调整行为会导致整体流动性分布的改变,从统计上看最终将会集中在市场价格附近。整体效率得到了提升,但用户之间的效率改变则取决于用户具体的挂单行为。
设计分析和优劣势
Uni V3 的设计目的是提高 LP 资金效率,LP 可以根据自己的判断提供流动性的范围可自由选择,进行定制化做市。这一设计虽然在整体上提高了 LP 的做市效率,但是 LP 们的收益不均衡,且增加额外的决策成本。LP 做市的主动性更强,但这一定程度上与 DEX 惰性做市的初衷相悖。大部分散户并没有预测市场的能力,反而会因为杠杆流动性面临更高的无常损失的风险。这一设计也催生出了 JIT(Just In Time)攻击的现象,做市操作变得更加复杂。
优势
劣势
自动调整价格曲线
Curve V2 是 Curve 针对非稳定资产设计的,核心思想跟 Curve 的 StableSwap 没有区别,让我们回顾一下 Curve 提出的 StableSwap。
Curve 第一代算法非常简洁,是恒定乘积和恒定价格两种做市曲线的加权求和。这使得曲线在固定价格附近的曲率变小,在固定价格上实现流动性的集中。稳定币的交易中,价格集中在 1 附近,Curve 通过这种方式实现了在 1 附近的流动性集中,从而提升了资金效率。
Curve V2 针对非稳定资产,也是用恒定乘积和恒定价格两种做市曲线进行加权求和得出新的做市曲线,只不过这个曲线会动态调整。上一代算法只能在固定价格附近集中流动性,而这一代算法会根据内部预言机动态调整这个价格以及集中流动性的程度。Curve V2 定义了 K 值,这是一个动态调整的参数,这个参数决定了曲线的形状。K 值越大,曲率越小,曲线越接近于恒定价格曲线,流动性越集中。
Curve V2 会根据内部预言机来计算 D 值,该参数将决定锚定价格,也即流动性集中的价格。Curve V2 算法是通过混合恒定乘积和恒定价格曲线来集中流动性,不断更新两个曲线的权重,内部预言机来决定流动性集中的锚定价格,通过不断更新这个价格,来实现流动性集中在盘口价格附近。
设计分析和优劣势
Curve V2 的设计是比较简洁的,通过混合恒定乘积和恒定价格曲线来集中流动性,内部预言机决定锚定价格。在 Curve V2 的这种设计模式下,内部预言机价格的改变是通过用户的交易行为来实现的,当大量的交易行为使得价格发生较大程度偏离时,内部预言机更新价格,流动性分布发生改变。
优势
劣势
做市商报价调整曲线
DODO 通过独创的 PMM 算法提供流动性,PMM 算法引入了参考价格,做市商通过自主报价,将流动性集中在市场价格附近。与基于 AMM 的做市算法不同,PMM 算法的价格计算基于外部价格和库存两个因素。当外部价格发生变化时,代币的兑换比例会直接发生变化,用户与池子交易的时候,库存发生变化,价格也会发生变化。因此,PMM 算法决定的代币价格取决于外部价格和用户交易行为,使得 DODO 可以提前调整流动性分布,始终将流动性保持在外部价格附近。
PMM 算法的具体形式如下,其中,参数 i 是外部价格,由做市商报价提供,k 是控制流动性集中程度的参数,k 越小,流动性越集中,B、Q 是代币的库存,该公式描述的是边际价格随着库存变动和外部价格变动的关系。
DODO 提供了灵活的建池方案,参数可以由用户自行设置,非常灵活。
设计分析和优劣势
从设计上来看,DODO 实际上参考了 CEX 的流动性分布。外部价格由做市商报价提供,预言机提供的外部价格实际上就是用户在 CEX 交易形成的市场价格。目前 CEX 的流动性依旧主导市场,根据外部价格调整流动性极大提升了做市效率。
优势
劣势
对不同 DEX 的交易池进行对比,由于做市算法各不相同,有很大的难度,比如数据源问题,比较分析问题以及如何确定一个比较的标准。
基于此,本文数据分析进行如下处理:
💡 对于 Uni V3 的 USDC/WETH 0.05% 池子来说,流动性整体集中的程度较高,波动较大,且在不同的市场环境下有所不同,在某些情况下,市场价格和拥有最高流动性的价格之间会发生较大偏离。
流动性分布均值
从图中可以看出,Uni V3 的 0.05% WETH/USDC 池子的流动性在大部分时间的流动性集中度较高,10% 以内的流动性平均占总流动性的比例高达 40%,基本上实现了集中流动性。总体来看,在相当长的时间跨度内,Uni V3 的 WETH 0.05% 池子的流动性集中程度保持了较高的水平,实现了 V3 的设计目的。
数据显示,在市场波动较大时,该池子的流动性分布会发生较大变化,市场价格附近的流动性集中程度迅速降低。例如,5 月 6 号到 5 月 13 号,6 月 10 号到 6 月 19 号,伴随着 ETH 价格的剧烈下降,该池子的流动性分布迅速调整,大量的用户行为导致市场价格附近的流动性集中程度大幅下降,用户纷纷把做市范围调整到市场价格以外,10% 以内的流动性降低到 10% 以下。因此,在市场价格剧烈波动时,由于 Uni V3 的机制设计,用户会预判市场,提前撤走流动性,使得流动性集中程度下降。
上图是流动性最高的 tick 价格与市场价格的对比情况,观察流动性最高的 tick 范围与市场交易价格范围的偏离程度,可以看出,Uni V3 在大多数时候,流动性最高的 tick 价格与市场交易价格是较为贴合的,但在某些时候会发生较大的偏离。
💡 Curve V2 的 USDT/WBTC/WETH 池子,即 3crypto 池子的流动性分布集中程度较高,波动性较低。市场价格和拥有最高流动性的价格之间在大部分时间会有一定的偏离,但最大不超过 1%。用户交易行为本身会导致内部预言机价格调整,而动态模拟 Curve V2 的变化较为复杂,且链下计算环境和链上计算环境存在差异,因此本文并没有考虑 Curve V2 的动态变化,低价格范围的流动性分布更具参考性。
流动性分布均值
从图中可以看出,Curve V2 的 USDT/WBTC/WETH 池子的流动性分布的波动较小,且呈现价格范围越大波动越高的特征,流动性集中在市场价格附近的程度较高。Curve V2 的特殊的波动性特征是由其算法决定的,由于 Curve 的曲线会动态调整,更大的价格范围受到的影响越大。与 DODO 的算法类似,由于预言机价格会发生调整,当用户交易行为使得价格偏离时,Curve V2 的内部预言机本身就发生了调整,所以 6%,10% 价格范围的流动性并不代表在实际交易中的市场深度。
可以看出,Curve 的内部预言机价格与市场价格还是存在一定的偏离的,虽然偏离程度较小,但是大多数情况下都会有些许偏离,这说明了 Curve 内部预言机的价格调整存在一定的时滞。这是算法本身的特性带来的,由于 Curve 会在用户交易使得价格偏离某个临界值时更新预言机价格,因此会存在一定的时滞,不过 Curve 的价格偏离程度较小。
💡 DODO 的 USDC/WETH 池子的流动性分布集中程度最高,这是因为 DODO 做市商一般将 K 值设定的非常小,并且高频率更新参考价格,从而将流动性集中。由于 DODO 做市商报价频率较高,市场价格和拥有最高流动性的价格之间保持高度锚定。
流动性分布均值
从图中可以看出,DODO 的 USDC/WETH 池子的流动性分布的波动较大,流动性集中在市场价格附近的程度非常高。从数据上来看,总体来看,DODO 的做市商最低会将 K 值设定到 0.01,从而实现流动性的高度集中。不过做市商在市场行情极端波动时会迅速调整 K 值,调整流动性分布,由于 PMM 算法给做市商提供了非常灵活的调整空间,因此流动性分布的调整非常灵活,总体上来说流动性集中程度比较高。
由于 DODO 的 PMM 算法通过做市商做市,提供报价,引入外部价格,从而使该池子的市场价格和拥有最高流动性的价格之间保持高度锚定。同时,对于 PMM 算法来说,拥有最高流动性的价格即为做市商提供的外部价格,因此,上图也说明了外部价格和市场价格相差不大,这说明并不会出现用户大规模交易使得市场价格大幅偏离做市商报价的情况,也即 DODO 的做市商价格调整能及时跟上市场变化。
本文获取了三个样本池的交易量和 TVL 数据,采用 Volume/TVL 作为资本效率的代理指标,该指标衡量了每单位 TVL 能带来的交易量是多少,反映了资金的做市效率。
由于三个样本池之间的交易量和 TVL 绝对值相差较大,我们直接比较资本效率。
从样本池的表现来看,DODO USDC/WETH 的资本效率高于 Uniswap USDC/WETH 池子的资本效率,高于 Curve 3crypto 池子的资本效率,这跟对应的流动性分布表现是一致的。DODO 的做市商池子有专业做市商提供报价,资本效率很高;Uniswap 的 USDC/WETH 池子是其交易量前几名的池子,流动性充足。对于 ETH 这种流动性较高的资产,Uni V3 的设计结构也能很好地集中流动性,提升资本效率。DODO 的算法对于价值稳定的资产有更好的效果,比如稳定币交易对。
上文通过选择 WETH 与稳定币交易对的样本池对不同的算法设计进行了对比分析,接下来我们对 Uniswap,Curve 和 DODO 的整体的市场表现进行对比。
从交易量来看,Uni V3 的交易量绝对规模超过 Curve 和 DODO。DODO 增速度快,7 月中旬之后,其交易量持续领先 Curve。由于稳定币行情的波动,Curve 在 5、6 月份的交易量跳涨。
Curve 的总锁定价值很高,但在稳定币行情出现波动后,急速下降,不足峰值一半。Uni 的 TVL 总量较大,波动性不高,并且在较差的市场行情下保持了稳定。相对而言,DODO 的 TVL 较低,且稳定币占很高的比例。
从图中可以看出,整体资本效率最高的是 DODO,其次是 Uniswap,最低的是 Curve。DODO 领先的资本效率主要是因为其稳定币交易对和专业做市商做市。DODO 稳定币交易对的交易量占比很高,且 PMM 算法为稳定币交易对设置 k 值为 0.01,稳定币交易对在市场价格附近的流动性集中程度很高,从而有更好的资本效率。Uniswap Lab 的团队在 Dunecon 中也提到了 DODO 在稳定币交易上的优势。
参考文献
https://messari.io/article/dex-education-uniswap-optimistic-rollups-and-the-layer-2-dex-landscape
https://members.delphidigital.io/reports/uniswap-vs-curve-which-is-the-best-dex
https://www.paradigm.xyz/2021/06/uniswap-v3-the-universal-amm
https://messari.io/article/the-chronicles-of-uniswap-the-token-the-switch-and-the-wardrobe
https://www.nansen.ai/research/the-market-making-landscape-of-uniswap-v3
https://blog.dodoex.io/%E4%BA%94%E5%88%86%E9%92%9F%E8%AF%BB%E6%87%82-dodo-%E8%83%8C%E5%90%8E%E7%9A%84-pmm-%E7%AE%97%E6%B3%95-%E4%B8%80%E4%B8%AA%E9%80%9A%E7%94%A8%E6%80%A7%E7%9A%84%E6%B5%81%E5%8A%A8%E6%80%A7%E6%A1%86%E6%9E%B6%E5%8F%8A%E5%A4%9A%E7%A7%8D%E7%94%A8%E4%BE%8B-39a49c222aff
https://resources.curve.fi/base-features/understanding-curve
https://docs.dodoex.io/chinese/dodo-xue-yuan/pmm-suan-fa-gai-lan/pmm-suan-fa-xi-jie
https://www.nansen.ai/research/the-market-making-landscape-of-uniswap-v3
https://uniswap.org/blog/uniswap-v3-dominance
https://dune.com/msilb7/Uniswap-v3-Pair-Deep-Dive
https://etherscan.io/
【免责声明】市场有风险,投资需谨慎。本文不构成投资建议,用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。